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Introduction

Considering the Earth’s crust’s omnipresent anisotropy,

accurate simulations of geoelectric data must account for

induced polarization (IP) effects in three dimensions.

The Generalized Effective Medium Theory of Induced

Polarization (GEMTIP, Zhdanov, 2008) models IP effects

in three dimensions at the rock scale (Alfouzan et al.,

2020), rather than mechanistically at the grain scale (Re-

vil and Cosenza, 2010). However, GEMTIP simulations

that consider realistic rock models derived from miner-

alogical analyses (e.g., Bérubé et al., 2018; Gurin et al.,

2018; Zhdanov et al., 2018) require solving the depolar-

ization tensors of each mineral inclusion numerically and

may be subject to prohibitive computation times.

This research aims to streamline GEMTIP simulations for

realistic rock models by simultaneously solving all depo-

larization tensor elements with a neural network.

Key variables

(x, y , z) and (θ, φ) are coordinates.
a, b, c are the semi-axes lengths of the ellipsoids.
σb = diag(σb,x, σb,y , σb,z ) is background conductivity.
A,B = b/a, c/a are ellipsoid shape ratios.
C,D = σb,y/σb,x, σb,z/σb,x are conductivity ratios.

Anisotropic depolarization tensors

The accumulation of charges on the surface of mineral

grains results in a voltage perturbation ∆U , which is as-
sumed proportional to the normal current, such that

∆U = κ(n̂ · J), (1)

where n̂ is a unit vector normal to the grain surface, J is
the current density and κ = λ(iω)−% is a function of the
imaginary unit i , angular frequencyω, surface polarizabil-
ity λ and relaxation parameter % (Zhdanov, 2008).

Bérubé and Gagnon (2024) derive the anisotropic depo-

larization tensors. The volume depolarization tensor is

Γ = −
abc

4πσs
T

∫ 2π
0

∫ π
0

dθdφ |sin θ|
|R′|3 n′R′, (2)

and the surface depolarization tensor is

Λ = −
abc

4πσs

∫ 2π
0

∫ π
0

dθdφ sin θ

|R′|5|n′| Q
′, (3)

where

r′ = a sin(θ) cos(φ) x̂+ b sin(θ) sin(φ) ŷ + c cos(θ) ẑ,

n′ = a−1 sin(θ) cos(φ) x̂+ b−1 sin(θ) sin(φ) ŷ + c−1 cos(θ) ẑ,

Q′ = (−3(R′R′) + |R′|2I)n′n′T2, T = σ−1/2b , R′ = Tr′,

and σs = det(σb)
1/2.

Equations 2 and 3 must be solved numericallywith Simp-

son’s Rule integration (SRI), for example.

Effective medium conductivity

Zhdanov (2008) defines the conductivity tensor σ as the
sum of the background conductivity σb and a conductiv-
ity perturbation ∆σ. The effective conductivity of a rock
containing N polarizable inclusions is

σeff = σb +

N∑
l=1

[I+ pl ]
−1 [I− (I+ pl) ∆σlΓl ]−1 [I+ pl ] ∆σlνl, (4)

where I is the identitymatrix and νl is the volumetric frac-
tion of the l th inclusion. Additionally, pl = ξlΓ

−1
l Λl is the

surface polarizability and ξ ≈ κ (∆σ)−1σbσ.

Rotation of the inclusions

To simulate a realistic effective rock medium, we define

mineral inclusions of any orientation with

Γrot,Λrot = SΓS
ᵀ,SΛSᵀ, (5)

where Γrot andΛrot are rotated depolarization tensors and
S is a rotation matrix defined by Euler angles α about the
x axis, β about the y axis and γ about the z axis.

Neural network approximation

We use a multilayer perceptron (MLP) withK = 4 hidden
layers. The MLP output aims to approximate the volume

and surface depolarization tensors and is defined as

Λ̂_Γ̂ =
(
W(K+1)a(K) + b(K+1)

)
, (6)

where the output of the k th hidden layer is

a(k) = SiLU
(
W(k)a(k−1) + b(k)

)
. (7)

W(k) and b(k) are the MLPweights and biases. The input
is a(0) = (A,B, C,D). SiLU is a sigmoid linear unit activa-
tion function. Figure 1 shows the MLP training strategy.
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Figure 1. MLP training flowchart. Figure 2. MLP learning curves.

We optimize W(k) and b(k) using the backward propa-
gation algorithm and Adam optimizer (Kingma and Ba,

2015), a batch size of 32 and a one-cyclemaximum learn-

ing rate of 10-2. The loss function we use is

Loss = ‖Λ̂_Γ̂− Λ_Γ‖22. (8)

Figure 2 shows the loss as a function of training epochs.

Validation metrics

We evaluate the number of exact significant digits with

p = − log10

∣∣∣∣∣∣Γ̂, Λ̂− Γ,ΛΓ,Λ

∣∣∣∣∣∣ , (9)

and the prediction bias with

r = log10

Γ̂, Λ̂
Γ,Λ

 , (10)

which should be symmetric with respect to the origin.

Neural network analysis

The volume depolarization tensor is more sensitive to

host rock conductivity, whereas the surface depolariza-

tion tensor is more sensitive to inclusion shape (Table 1).

Table 1. Relative sensitivity indices of the MLP (in %).

Shape (A,B) Conductivity (C,D)

Volume (Γ) 47.80± 0.06 52.20± 0.08
Surface (Λ) 64.53± 0.05 35.47± 0.07

For weakly anisotropic materials (ABCD > 0.1 in Fig-
ure 3), the MLP predicts up to four exact significant dig-

its with a negligible bias. For highly anisotropic materials

(ABCD � 0.1), the MLP precision decreases to two ex-
act significant digits while its prediction bias increases.
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Figure 3. Validation metrics. Figure 4. Computation times.

Remarkably, SRI takes up to 104 seconds to solve the

depolarization tensors of one million inclusions, whereas

theMLP performs this task in only 10-1 second (Figure 4).

Application to real rock samples

We test the MLP using an actual metasedimentary rock

sample (K389055) from the sulfide-associated Canadian

Malartic disseminated gold deposit. Extensive quanti-

tative mineralogy analyses and complex resistivity mea-

surements of sample K389055 are described in Bérubé

et al. (2018). Figure 5 shows one of 1708 backscatter

electron images from petrographic thin sections of sam-

ple K389055, and Figure 6 shows the grain statistics of

this sample derived from mineral liberation analysis.
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Figure 5. Backscatter electron

image of sample K389055.

Figure 6. Pyrite grain statistics of

sample K389055.

In Figure 7, we illustrate an effective medium based on

the grain statistics of sample K389055, assuming that

mineral grains are triaxial ellipsoids (c values are randomly
drawn from the a and b grain size distributions).
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Figure 7. Effective medium

derived from sample K389055.

Figure 8. Effective complex

conductivity of sample K389055.

Finally, Figure 8 shows the measured and modelled com-

plex conductivity of sample K389055. We use the field-

measured background conductivity anisotropy values of

Mir et al. (2018) for Canadian Malartic in the simulation.

Conclusions

Neural networks can streamline IP modelling for

anisotropic rocks by simultaneously solving the depo-

larization tensors of numerous mineral inclusions. Af-

ter extensive model validation, we test the MLP by sim-

ulating the effective complex conductivity of real rock

samples. Based on effective medium theory, the model

predictions are compatible with previously published IP

measurements performed in one direction. Results show

that machine learning is a fast and precise alternative to

numerical integration for solving depolarization tensors,

making it practical to simulate the IP responses of realis-

tic rock models with limited computational resources.
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