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Introduction

Effective medium theory (EMT) is a fundamental ap-

proach for modelling complex arrangements of various

materials (Pan, 2019; Zhang and Wu, 2015). In the con-

text of induced polarization (IP), EMT is used to relate

the physical parameters of inclusions within a host rock

to the rock’s measured effective electrical conductivity.

The Generalized Effective Medium Theory of Induced

Polarization (GEMTIP, Zhdanov, 2008) model enhances

the Cole-Cole model by incorporating physical proper-

ties of rock media. This poster aims to further refine the

GEMTIP model by integrating anisotropic Green’s func-

tions and triaxial ellipsoidal inclusions. These enhance-

ments impact the depolarization tensors, which are com-

puted, compared, and analyzed in the following sections.

Green’s function formulation

The complex conductivity tensor is

σ(r) = ∆σ(r) + σb, (1)

where σb = diag(σb,x, σb,y, σb,z) is the volume average of
the background conductivity and∆σ(r) is the conductiv-
ity perturbation caused by the inclusions. The next step

involves the quasi-static Maxwell equations with

∇ ·
(

∇ × B + ε0µ0
∂E
∂t

)
= µ0∇ · J =⇒ ∇ · J = 0. (2)

Ohm’s law, J = σE, is then used inside the inclusion
where no accumulation of charge occurs, yielding

∇ · −σbE(r) = ∇ · (∆σ(r)E(r)). (3)

Equation 3 then facilitates a Green’s function formula-

tion that incorporates the boundary surface field of the

IP effect (Zhdanov, 2008), which we write as

E(r) = E0 + E0ξχ
∫

S
∇∇′G(r, r′)n̂(r′)n̂(r′) dS︸ ︷︷ ︸

Λ

+ E0χ
∫

V
∇∇′G(r, r′)(r′) dV︸ ︷︷ ︸

Γ

, (4)

whereΓ andΛ are the volume and surface depolarization
tensors, respectively. χ(r) ·E0 = ∆σ(r)E0 is the material

property tensor, ξ(r) = κ (∆σ(r))−1 σbσ(r) is the relative
material property tensor and E0 is the applied field (Zh-

danov, 2008). Simplifications ξ(r) ≈ ξ and χ(r) ≈ χ are
valid under the quasi linear approximation. The depolar-

izing effect of Γ and Λ are shown in Figure 1.

Figure 1. Schematic of an inclusion in a host media and behaviour

of Γ, Λ as functions of inclusion size (Kittel, 2004; Zhdanov, 2008).

The tensors integrals in Equation 4 are then developed

using the anisotropic Green’s function G(R, R′), after
Stroud (1975) and Apresyan and Vlasov (2014), reading

G(R, R′) = 1
4πσs |R − R′|

, (5)

where the variable change (R, R′) = (r, r′)/σ
1/2
b is used

to relate the expression to the spherical coordinates in

r′ = a sin(θ) cos(φ) x̂ + b sin(θ) sin(φ) ŷ + c cos(θ) ẑ

and

n′ = a−1 sin(θ) cos(φ) x̂ + b−1 sin(θ) sin(φ) ŷ + c−1 cos(θ) ẑ,

where a, b and c are the ellipsoidal semi-axes lengths
along the x, y, and z axes, respectively, and θ and φ are
the inclination and azimuth angles, respectively.

Anisotropic ellipsoidal properties

Following the derivation steps in Bérubé and Gagnon

(2024), the volume depolarization tensor is

Γ = − abc

4πσs
T
∫ 2π

0

∫ π

0

dθdφ |sin θ|
|R′|3

n′R′, (6)

with T = σ
−1/2
b , and the surface depolarization tensor is

Λ = − abc

4πσs

∫ 2π

0

∫ π

0

dθdφ sin θ

|R′|5|n′|
Q′, (7)

with Q′ =
(
−3(R′R′) + |R′|2I

)
n′n′T2, σs = det(σb)1/2.

It is important to note that the volume depolarization

tensor is now integrated over the surface, using a corol-

lary of the divergence theorem. This approach is analo-

gous to transforming volume dipoles into fictitious sur-

face charges (see Figure 1). According to Milton (2002),

the analytical solution for volume depolarization can be

expressed using elliptic functions of the first kind (F) and

the second kind (E) provided that a′ = a/
√

σb,x > b′ =
b/

√
σb,y > c′ = c/

√
σc,z. Also, for spheres (a = b = c) in

isotropic media (σb,x = σb,y = σb,z) one finds

Γ = 1
3σb

, Λ = 2
3aσb

, (8)

which is consistent with Zhdanov (2008).

Methodology

a) The calculated depolarization tensor Γ̂, Λ̂ of randomly
chosen anisotropy parametersA = b/a, B = c/a andC =
σb,y/σb,x, D = σb,z/σb,x are validated using the significant

digit metric

p = − log10

∣∣∣∣∣∣
∣∣∣∣∣∣Γ̂, Λ̂ − Γ, Λ

Γ, Λ

∣∣∣∣∣∣
∣∣∣∣∣∣ (9)

used with the Frobenius matrix norm. For the surface

depolarization tensors, a confirmation usingwork on rev-

olution ellipsoids inclusions in isotropic bulk media from

Zhdanov et al. (2018) is done. The p values are averaged
(p) over an interval of variable size with every values of
A, B, C, D picked within this interval of mean Π to in-

crease clarity. The Python torchquad (TQ) library and its

Simpson’s rule integration (SRI) implementation is used

to integrate with a fixed number of sample points Nspl..

b) The non-uniform Metropolis-Hasting (MH) sampling

method is used to improve the integrand evaluations,

since the functions are quite discontinuous. Then, a

trapezoidal scheme is used to perform the integration

over a triangulated unstructured mesh.

c) The Γ, Λ are calculated and compared to their simpli-

fied solutions Γ′, Λ′ for a revolution ellipsoid (b = c) and a
simple model that modifies the conductivity in the given

direction to adjust for the anisotropy in the depolariza-

tion tensor (see Equation 8).

Results

a) Figure 2 shows that are our depolarization tensor es-

timations are in agreement with the literature, having up

to six exact/consistent digits when using Nspl. = 104. For

the volume depolarization tensors, the p values decrease
with increasing anisotropy.
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Figure 2. Number of

exact/consistent digits on Γ, Λ.
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Figure 3. p value of Γ with TQ
and MH at high anisotropy.

b) Figure 3 shows that using the MH algorithm improves

the p value from 1.5 to 2.5 at high anisotropy. However,
the runtime of MH is ≈ 50 times longer than TQ.

Results (continued)

c) Figure 4 shows that the scale dependence of all the

surface depolarization tensor elements is consistent with

Equation 8 for a ≥ 2 mm. The longer axis has the low-
est depolarization tensor, showing consistence with the

volume depolarization tensor in Figure 6. Along with the

previous remark, the reduction in Λx,y,z at a ≤ 2 mm could
be explained by the surface dipoles at the edges of the

inclusion (see Figure 1), cancelling Edep. in the inclusion

center, thus reducing Λx,y,z. This interpretation is also

corroborated by Figure 7 which shows a decrease in the

sum ofΛ as the inclusion size is decrease, while the sum
of Γ stays constant, in agreement with Kittel (2004).
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Figure 4. Tensors as a function of

a. For Γ, (b, c) = (0.5, 3) mm and
for Γ′, b = c = 1.75 mm. For both

models, σb = I .

10−1 100 101

σb,x (Ω−1 ·mm−1)

10−1

100

101

Λ
(Ω

)

Λx

Λ′x
Λy

Λ′y

Λz

Λ′z

Figure 5. Tensors as a function of

σb,x. For both models,

(σb,y, σb,z) = (1, 2) Ω−1·mm-1 and
a = b = c = 1 mm.
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Figure 6. Tensors as a function

of a. For Γ, (b, c) = (0.5, 3) mm
and for Γ′, b = c = 1.75 mm. For

both models, σb = I .
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Figure 7. Tensors sum as a

function of a. For Γ,
(b, c) = (0.5, 3) mm and for Γ′,

b = c = 1.75 mm. Again, σb = I .

Errors on Γ, Λ range from 10% to 50% using simplified

ellipsoids. The impact of σb,x is smaller but still notice-

able at reasonable bulk anisotropy C, D ≈ 2, 3. Thereby,
considering a, b, c and σb,x, σb,y, σb,z is important to pre-

dict the depolarization tensors in any direction.

Clear differences exist between the simplified and

anisotropic GEMTIP models. IP researchers may find the

latter useful for modelling the effective conductivity of

anisotropic rocks and soils or strengthening interpreta-

tions of IP data collected in multiple directions.

Conclusions

An anisotropic Green’s function was incorporated into

the framework of the GEMTIPmodel and triaxial ellipsoid

inclusions were considered. The depolarization tensors

were then examined: a) their accuracy was verified, b)

estimations were enhanced for higher anisotropy, and c)

the tensors were compared with simplified models. This

approach demonstrates significant improvements over

simplified unidirectional conductivitymodelswith prolate

and oblate ellipsoid inclusions in IP models.
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